如图,椭圆 C : x 2 a 2 + y 2 b 2 = 1 的顶点为 A 1 , A 2 , B 1 , B 2 ,焦点为 F 1 , F 2 , | A 1 B 1 | = 7 , S ▱ B 1 A 1 B 2 A 2 = 2 S ▱ B 1 F 1 B 2 F 2 .
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设 n 为过原点的直线, l 是与 n 垂直相交于 P 点,与椭圆相交于 A , B 两点的直线, | O P ⇀ | = 1 .是否存在上述直线 l 使 O A ⇀ · O B ⇀ = 0 成立?若存在,求出直线 l 的方程;并说出;若不存在,请说明理由.
将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为多少?
求过点且被圆所截得的弦长为的直线方程
已知正方形的中心为,一条边所在的直线的方程,求正方形的其他三边所在的直线方程
(Ⅰ)设求的值; (Ⅱ)设,求的值
(本小题满分15分) 已知函数. (I)求在上的最大值; (II)若对任意的实数,不等式恒成立,求实数的取值范围; (III)若关于的方程在上恰有两个不同的实根,求实数的取值范围.