如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形, P A ⊥ 平面 A B C D , A P = A B = 2 , B C = 2 2 , E , F 分别是 A D , P C 的中点.
(1)证明: P C ⊥ 平面 B E F
(2)求平面 B E F 与平面 B A P 夹角的大小
【改编】在平面直角坐标系中,已知直线的方程为:,圆的方程为:.(1)若圆关于直线对称,求的值;(2)若圆与直线相切,求的值.
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。(1)求证:EF∥平面PAD;(2)求证:平面PAD⊥平面PCD
已知两条直线与的交点,求:(1)过点且过原点的直线方程;(2)过点且垂直于直线的直线的方程。
直三棱柱 是的中点. (Ⅰ)求证:; (Ⅱ)求证:.
如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线.(1)求曲线的方程;(2)若直线与(1)中所求点的轨迹交于不同两点是坐标原点,且,求△的面积的取值范围.