数列 a n ( n ∈ N * ) 中, a 1 = a , a n + 1 是函数 f n ( x ) = 1 3 x 3 - 1 2 ( 3 a n + n 2 ) x 2 + 3 n 2 a n x 的极小值点.
(Ⅰ)当 a = 0 时,求通项 a n ; (Ⅱ)是否存在 a ,使数列 a n 是等比数列?若存在,求 a 的取值范围;若不存在,请说明理由.
设函数,图象的一条对称轴是直线.求;求函数的单调增区间;证明直线与函数的图象不相切.
设函数的最大值为M,求M;若有10个互不相等的正数满足M,且(i=1,2,…10)求…的值.
已知函数.求的最小正周期;求在区间上的最大值和最小值.
已知,当,求函数的零点.
对于函数y=f(x),若x1+x2="1," 则f(x1)+f(x2)=1,记数列f(),f(),……,f()……,(n≥2,n∈)的前n项的和为Sn ; (1)求Sn; (2)若a=,a=" " (n≥2,n∈),