如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是 30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪 的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)
如图,已知平行四边形ABCD中,点为边的中点,延长相交于点. 求证:.
计算:
平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形。 (1)若抛物线过点C,A,,求此抛物线的解析式; (2)求平行四边形ABOC和平行四边形重叠部分△的周长; (3)点M是第一象限内抛物线上的一动点,间:点M在何处时△的面积最大?最大面积是多少?并求出此时点M的坐标。
如图,抛物线经过A(4,0),B(1,0)两点. (1)求出抛物线的解析式; (2)若P是抛物线上x轴上方的一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.