(本题6分)先化简,再求值:1-÷ 其中a=-1,b= .
如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?
如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数。
.
如图,抛物线交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.
如图, A B 是 ⊙ O 的直径, ∠ B = ∠ C A D . (1)求证: A C 是 ⊙ O 的切线; (2)若点 E 是 B D ⏜ 的中点,连接 A E 交 B C 于点 F ,当 B D = 5 , C D = 4 时,求 A F 的值.