定义:两组邻边分别相等的四边形叫做筝形. (1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想. (2)筝型ABCD中,对角线AC,BD相交于点O. ①如图1,若BD=CO,求tan∠BCD的值. ②如图2,若∠DAC=∠BCD=72º,求AD:CD的值. (3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.
如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出 △ABC关于y轴对称图形△A1B1C1.
如图,△ABC中,AB=AC,AE是外角∠CAD的平分线,求证:AE∥BC
在△ABC中,∠B=∠A+20O,∠C=∠B+20O,求△ABC的三个内角的度数.
已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点. (1)如图1,若点C的横坐标为4,求点B的坐标; (2)如图2,BC交x轴于D,AD平分∠BAC,若点C的纵坐标为3,A(5,0),求点D的坐标. (3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求S△BEM:S△ABO.
如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______________,并给予证明.