如图,已知抛物线y=与x轴交于A、B两点.(1)点A的坐标是 ,点B的坐标是 ,抛物线的对称轴是直线 ;(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C 在点D的左边).若CD:AB=3:4,求m的值;(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b0)与 x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.
已知抛物线C1:的顶点A到轴的距离为3, 与轴交于C、D两点.(1)求顶点A的坐标;(2)若点B在抛物线C1上,且,求点B的坐标.
如图,为⊙O的直径,是弦,且于点E.连接、、.(1)求证:=. (2)若=,=,求⊙O的直径.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元)(,当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,并且又要减少库存,那么销售单价应定为多少元?
已知二次函数(1)用配方法将化成的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)写出当x为何值时,y>0.
已知:,求代数式的值.