如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的点B′处,C的对应点为C′.(1)求出B′点和M点的坐标;(2)求直线A C′的函数关系式;(3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q;①求运动t秒时,Q点的坐标;(用含t的代数式表示)②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?
(本题8分)如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,RD交AC于点F.(1)求证:DE是⊙O的切线;(2)若CE=2,ED=4,求⊙O的半径.
(本题8分)某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每问每年交各种费用5000元. (1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? (3)当每间商铺的年租金定为多少万元时,该公司的年收益最大?(假设年租金每次增加的幅度必须为5000元的倍数)
(本题8分)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;(2)若AD=1,DE=3,求BD的长.
(本题7分)为了解学生的出行状况,某中学就到校的方式问题对各个年级的部分学生进行了一次调查,并将调查结果制作了表格和扇形统计图,请你根据图表信息完成下列各题:(1)补全下表(2)在扇形统计图中,“步行”对应的圆心角的度数为 ▲ .(3)若该中学有学生1900人,请估计乘公交车上学的学生有多少人?
(本题7分)已知一元二次方程x2-2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.