如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD. (1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.
传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作早点:一个枣馅粽,一个肉馅粽,两个花生馅粽,四个粽子除内部馅料不同外,其它一切均相同.
(1)小文吃前两个粽子刚好都是花生馅粽的概率为 1 6 ;
(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请说明理由.
今年市委市政府积极推进创建"全国文明城市"工作,市创城办公室为了调查初中学生对"社会主义核心价值观"内容的了解程度(程度分为:" A − 十分熟悉"," B − 了解较多"," C − 了解较少"," D − 不知道" ) ,对我市一所中学的学生进行了随机抽样调查,根据调查结果绘制了两幅不完整的统计图如图,根据信息解答下列问题:
(1)本次抽样调查了多少名学生;
(2)补全条形统计图和扇形统计图;
(3)求扇形统计图中" D − 不知道"所在的扇形圆心角的度数;
(4)若该中学共有2400名学生,请你估计这所中学的所有学生中,对"社会主义核心价值观"内容的了解程度为"十分熟悉"和"了解较多"的学生共有多少名?
如图,抛物线 y = a x 2 − 2 x + c ( a ≠ 0 ) 与 x 轴、 y 轴分别交于点 A , B , C 三点,已知点 A ( − 2 , 0 ) ,点 C ( 0 , − 8 ) ,点 D 是抛物线的顶点.
(1)求抛物线的解析式及顶点 D 的坐标;
(2)如图1,抛物线的对称轴与 x 轴交于点 E ,第四象限的抛物线上有一点 P ,将 ΔEBP 沿直线 EP 折叠,使点 B 的对应点 B ' 落在抛物线的对称轴上,求点 P 的坐标;
(3)如图2,设 BC 交抛物线的对称轴于点 F ,作直线 CD ,点 M 是直线 CD 上的动点,点 N 是平面内一点,当以点 B , F , M , N 为顶点的四边形是菱形时,请直接写出点 M 的坐标.
如图, ∠ MAN = 60 ° , AP 平分 ∠ MAN ,点 B 是射线 AP 上一定点,点 C 在直线 AN 上运动,连接 BC ,将 ∠ ABC ( 0 ° < ∠ ABC < 120 ° ) 的两边射线 BC 和 BA 分别绕点 B 顺时针旋转 120 ° ,旋转后角的两边分别与射线 AM 交于点 D 和点 E .
(1)如图1,当点 C 在射线 AN 上时,
①请判断线段 BC 与 BD 的数量关系,直接写出结论;
②请探究线段 AC , AD 和 BE 之间的数量关系,写出结论并证明;
(2)如图2,当点 C 在射线 AN 的反向延长线上时, BC 交射线 AM 于点 F ,若 AB = 4 , AC = 3 ,请直接写出线段 AD 和 DF 的长.
如图, ΔABC 内接于 ⊙ O , AC 是直径, BC = BA ,在 ∠ ACB 的内部作 ∠ ACF = 30 ° ,且 CF = CA ,过点 F 作 FH ⊥ AC 于点 H ,连接 BF .
(1)若 CF 交 ⊙ O 于点 G , ⊙ O 的半径是4,求 AG ̂ 的长;
(2)请判断直线 BF 与 ⊙ O 的位置关系,并说明理由.