如图,在平面直角坐标系中,直线与抛物线交于A,B两点,点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D(1)求a,b及的值(2)设点P的横坐标为①用含的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由.
如图, 在正方形 ABCD 中, E , F 分别为 AD , CD 边上的点, BE , AF 交于点 O ,且 AE = DF .
(1) 求证: ΔABE ≅ ΔDAF ;
(2) 若 BO = 4 , OE = 2 ,求正方形 ABCD 的面积 .
学校要组织去春游,小陈用50元负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为6元 / 件,问:小陈最多能买第二种食品多少件?
据查,柳州市2017年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值.
6月5日
星期一
大雨
24 ~ 32 ° C
6月6日
星期二
中雨
23 ~ 30 ° C
6月7日
星期三
多云
23 ~ 31 ° C
6月8日
星期四
25 ~ 33 ° C
6月9日
星期五
26 ~ 34 ° C
如图,在平行四边形 ABCD 中, AB = 3 , BC = 4 ,求这个平行四边形 ABCD 的周长.
如图,已知抛物线过点 A ( 4 , 0 ) , B ( − 2 , 0 ) , C ( 0 , − 4 ) .
(1)求抛物线的解析式;
(2)在图甲中,点 M 是抛物线 AC 段上的一个动点,当图中阴影部分的面积最小值时,求点 M 的坐标;
(3)在图乙中,点 C 和点 C 1 关于抛物线的对称轴对称,点 P 在抛物线上,且 ∠ PAB = ∠ CA C 1 ,求点 P 的横坐标.