(本小题满分14分)已知数列{an}是等差数列,{bn}是等比数列,且满足a1+a2+a3=9,b1b2b3=27.若a4=b3,b4-b3=m.(1)当m=18时,求数列{an}和{bn}的通项公式;(2)若数列{bn}是唯一的,求m的值.
如图,∠BAC的平分线与BC和外接圆分别相交于D和E, 延长AC交过D,E,C三点的圆于点F。 (Ⅰ)求证:; (Ⅱ)若,求的值。
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。 (1)求椭圆C的方程; (2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
设函数(提示 :) (1)若函数在定义域上是单调函数,求实数的取值范围; (2) 若,证明对任意的正整数n,不等式都成立.
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。 (I)求线段 的值; (II)求直线BD1与平面BDE所成角的正弦值;
已知等差数列的前项和为,且,. (1)求数列的通项; (2)设,求数列的前项和.