如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,点E在线段AD上,且CE∥AB。求证:CE⊥平面PAD;(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
(满分12分)已知向量与互相垂直,其中. (1)求和的值; (2)求函数的值域。
满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。 (Ⅰ)求角C的大小; (Ⅱ)求的最大值。
(满分14分)已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
(满分14分)已知函数 (1)当时,求曲线在点处的切线方程; (2)当时,讨论的单调性
(满分14分)设命题P:关于x的不等式(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R,如果P或Q为真,P且Q为假,求a的取值范围