(本小题满分16分)设各项均为正数的数列的前项和为,满足,且恰好是等比数列的前三项.(1)求数列、的通项公式; (2)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.(Ⅰ)取出的3个小球上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)计分介于20分到40分之间的概率.
在中,角所对的边分别为,且满足,. (Ⅰ)求的面积; (Ⅱ)若,求的值.
已知动圆P过点且与直线相切.(Ⅰ) 求动圆圆心P的轨迹E的方程;(Ⅱ) 设直线与轨迹E交于点A、B,M是线段AB的中点,过M作轴的垂线交轨迹E于N.① 证明:轨迹E点N处的切线与AB平行;② 是否存在实数,使?若存在,求的值;若不存在,说明理由.
设函数. (Ⅰ) 对于任意实数,求证:;(Ⅱ) 若方程有且仅有一个实根,求的取值范围.
已知数列满足:(是与无关的常数且).(Ⅰ) 设,证明数列是等差数列,并求;(Ⅱ) 若数列是单调递减数列,求的取值范围.