袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.(Ⅰ)取出的3个小球上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)计分介于20分到40分之间的概率.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限). (Ⅰ)求曲线的方程; (Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
如图,已知平面是正三角形,. (Ⅰ)在线段上是否存在一点,使平面? (Ⅱ)求证:平面平面; (Ⅲ)求二面角的余弦值.
已知函数(,是不同时为零的常数). (1)当时,若不等式对任意恒成立,求实数的取值范围; (2)求证:函数在内至少存在一个零点.
已知,. (1)若,求的值; (2)若,,求的值.
某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨(),从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?