(本小题共14分)在四棱锥中,底面是矩形,平面,,. 以的中点为球心、为直径的球面交于点,交于点.(1)求证:平面⊥平面; (2)求直线与平面所成的角的正弦值.
如图,在三棱锥中,,,D为AC的中点,. (1)求证:平面平面; (2)如果三棱锥的体积为3,求.
在锐角中,分别为角的对边,且. (1)求角A的大小; (2)求的最大值.
已知,. (1)求的最小值; (2)证明:.
已知圆,直线,以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系. (1)将圆C和直线方程化为极坐标方程; (2)P是上的点,射线OP交圆C于点R,又点Q在OP上且满足,当点P在上移动时,求点Q轨迹的极坐标方程.
如图,内接于上,,交于点E,点F在DA的延长线上,,求证: (1)是的切线; (2).