已知数列满足:(是与无关的常数且).(Ⅰ) 设,证明数列是等差数列,并求;(Ⅱ) 若数列是单调递减数列,求的取值范围.
设分别为双曲线的左、右顶点,双曲线的实轴长为,焦点到渐近线的距离为. (1)求双曲线的方程; (2)已知直线与双曲线的右支交于两点,且在双曲线的右支上存在点,使,求的值及点的坐标.
已知椭圆及直线:. (1)当直线和椭圆有公共点时,求实数的取值范围; (2)求被椭圆截得的最长弦长及此时直线的方程.
设实数满足,其中;实数满足 (1)若,且为真,求实数的取值范围; (2)若是的必要不充分条件,求实数的取值范围.
设命题;命题,使得,如果命题或为真命题,命题且为假命题,求实数的取值范围.
已知圆:,点,,点在圆上运动,的垂直平分线交于点. (1)求动点的轨迹的方程; (2)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率; (3)过点且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.