在中,角所对的边分别为,且满足,. (Ⅰ)求的面积; (Ⅱ)若,求的值.
设数列的各项都是正数,且对任意,都有,其中 为数列的前项和。(1)求证数列是等差数列;(2)若数列的前项和为Tn,求Tn。
在中,边、、分别是角、、的对边,且满足(1)求;(2)若,,求边,的值.
已知偶函数满足:当时,,当时,.(Ⅰ)求表达式;(Ⅱ)若直线与函数的图像恰有两个公共点,求实数的取值范围; (Ⅲ)试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)
如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.(Ⅰ)若,求抛物线的方程;(Ⅱ)求△ABM面积的最大值.
已知函数(Ⅰ)求函数的单调区间及的取值范围;(Ⅱ)若函数有两个极值点求的值.