已知偶函数满足:当时,,当时,.(Ⅰ)求表达式;(Ⅱ)若直线与函数的图像恰有两个公共点,求实数的取值范围; (Ⅲ)试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)
已知. (1)化简; (2)若是第三象限角,且,求的值.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、. (1)求数列的通项公式; (2)数列的前n项和为,求证:数列是等比数列.
已知数列{an}的前n项和, (1)求通项公式an;(2)令,求数列{bn}前n项的和Tn.
已知向量, (1)求; (2)若的最小值是,求实数的值.
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.(1)若,求边c的值; (2)设,求t的最大值.