如图,已知DE是△ABC的边AB的垂直平分线交AB于D,BC于E,AE恰好是∠BAC的平分线,若∠B=30°.(1)求∠C的度数;(2)你发现了什么?
某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图8是整理数据后画的两幅不完整的统计题,请你根据图中的信息,解答下列问题 (1)这次活动一共调查了名学生. (2)在扇形统计图中,“其它”所在的扇形圆心角为度. (3)补全条形统计图 (4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有人.
解分式方程:
如图(十一)所示,在平面直角坐标系Oxy中,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C. (1)求∠ACB的度数; (2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形.若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.
数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN. (1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整. 证明:在AB上截取EA=MC,连结EM,得△AEM. ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2. 又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………① 又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM. ∴△BEM为等边三角形.∴∠6=60°. ∴∠5=180°-∠6=120°.………② ∴由①②得∠MCN=∠5. 在△AEM和△MCN中, ∵________________________________ ∴△AEM≌△MCN (ASA).∴AM=MN. (2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明) (3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.