(本小题满分13分)如图1,在中,,,,、分别为、的中点,连接并延长交于,将沿折起,使平面平面,如图2所示.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值;(3)在线段上是否存在点使得平面?若存在,请指出点的位置;若不存在,说明理由.
如图,已知椭圆的右焦点为F,过F的直线(非x轴)交椭圆于M、N两点,右准线交x轴于点K,左顶点为A. (Ⅰ)求证:KF平分∠MKN;(Ⅱ)直线AM、AN分别交准线于点P、Q,设直线MN的倾斜角为,试用表示线段PQ的长度|PQ|,并求|PQ|的最小值.
(本小题满分13分)如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB.D、E分别为棱C1C、B1C1的中点. (Ⅰ)求A1B与平面A1C1CA所成角的大小;(Ⅱ)求二面角B-A1D-A的大小;(Ⅲ)试在线段AC上确定一点F,使得EF⊥平面A1BD.
甲、乙两人参加一项智力测试.已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题,规定每位参赛者都从备选项中随机抽出3道题进行测试,至少答对2道题才算通过. (Ⅰ)求甲答对试题数x的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人通过测试的概率.
在中,设. (Ⅰ)求证:为等腰三角形;(Ⅱ)若且,求的取值范围.
已知数列中,,,其前项和满足,令.(Ⅰ)求数列的通项公式;(Ⅱ)令,求证:① 对于任意正整数,都有; ② 对于任意的,均存在,使得时,.