(本小题满分13分)如图1,在中,,,,、分别为、的中点,连接并延长交于,将沿折起,使平面平面,如图2所示.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值;(3)在线段上是否存在点使得平面?若存在,请指出点的位置;若不存在,说明理由.
(本小题共10分) 已知函数 (1)解关于的不等式; (2)若函数的图象恒在函数图象的上方(没有公共点),求的取值范围。
(本小题共10分) 在直角坐标系中直线L过原点O,倾斜角为,在极坐标系中(与直角坐标系有相同的长度单位,极点为原点,极轴与x的非负半轴重合)曲线C:, (1)求曲线C的直角坐标方程; (2)直线L与曲线C交于点,求的值。
(本小题共12分) 已知函数, (1)若对于定义域内的恒成立,求实数的取值范围; (2)设有两个极值点,且,求证:; (3)设若对任意的,总存在,使不等式成立,求实数的取值范围.
(本小题共12分) 如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点, 定点B的坐标为(2,0). (1)若动点M满足,求点M的轨迹C; (2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(本小题共12分) 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=. (1)求证:平面PQB⊥平面PAD; (2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.