已知数列中,,,其前项和满足,令.(Ⅰ)求数列的通项公式;(Ⅱ)令,求证:① 对于任意正整数,都有; ② 对于任意的,均存在,使得时,.
设集合U=R,;(1)求:,;(2)设集合,若,求a的取值范围.
已知tanα是关于x的方程的一个实根,且α是第三象限角.(1)求的值;(2)求的值.
如图在直三棱柱中已知AB=BC=1,,,D是上的点,且(1)求AD与C1B1所成的角的大小;(2)求二面角的余弦值.
已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为.(1)求的顶点、的坐标;(2)若圆经过不同的三点、、,且斜率为的直线与圆相切于点,求圆的方程.
如图,在四棱锥中,是正方形,平面,,分别是的中点.(1)求证:平面平面;(2)在线段上确定一点,使平面,并给出证明.