如图,已知椭圆的右焦点为F,过F的直线(非x轴)交椭圆于M、N两点,右准线交x轴于点K,左顶点为A. (Ⅰ)求证:KF平分∠MKN;(Ⅱ)直线AM、AN分别交准线于点P、Q,设直线MN的倾斜角为,试用表示线段PQ的长度|PQ|,并求|PQ|的最小值.
(本小题12分)如图7,已知圆,设A为圆C与x轴负半轴的交点,过点A作圆C的弦AM,并使弦AM的中点恰好落在y轴上. (1)当在内变化时,求点M的轨迹E的方程; (2)已知定点P(-1,1)和Q(1,0),设直线PM、QM与轨迹E的另一个交点分别是M1、M2 . 求证:当M点在轨迹E上变动时,只要M1、M2都存在且M1M2,则直线M1M2恒过一个定点,并求出这个定点。
(本小题12分)已知椭圆C的中心在坐标原点O,焦点在x轴上,离心率等于, 它的一个顶点B恰好是抛物线的焦点。 (1)求椭圆C的方程; (2)直线与椭圆C交于两点,那么椭圆C的右焦点是否可以成为的垂心?若可以,求出直线的方程;若不可以,请说明理由.(注: 垂心是三角形三条高线的交点)
(本小题12分) 如图,在边长为12的正方形中,点B、C在线段AA′上,且AB=3,BC=4.作BB1∥AA1,分别交A1A1′、AA1′于点B1、P;作CC1∥AA1,分别交A1A1′、AA1′于点C1、Q. 现将该正方形沿BB1,CC1折叠,使得与AA1重合,构成如图(2)所示的三棱柱ABC-A1B1C1. (1)在三棱柱ABC-A1B1C1中,求证:AP⊥BC; (2)在三棱柱ABC-A1B1C1中,连接AQ与A1P,求四面体AA1QP的体积; (3)在三棱柱ABC- A1B1C1中,求直线 PQ与直线AC所成角的余弦值.
(本小题13分)如图,在直三棱柱ABC-A1B1C1中,,点E、F、G分别是AA1、 AC、BB1的中点,且CG⊥C1G . (1)求证:CG//面BEF; (2)求证:面BEF⊥面A1C1G .
(本小题13分)已知命题A:方程表示焦点在轴上的椭圆; 命题B:实数使得不等式成立。 (1)若命题A为真,求实数的取值范围; (2)若命题B是命题A的必要不充分条件,求实数的取值范围。