(本小题满分10分)选修4-1:几何证明选讲如图,过点作圆的割线与切线,为切点,连接,,的平分线与,分别交于点,,其中.求证:;求的大小.
(本小题满分13分)双曲线的中心是原点O,它的虚轴长为,相应于焦点F(c,0)(c>0)的准线与x轴交于点A,且|OF|=3|OA|,过点F的直线与双曲线交于P、Q两点.(1)求双曲线的方程;(2)若=0,求直线PQ的方程.
(本小题满分12分)已知函数.(1)当为何值时,无极值;(2)试确定实数的值,使的极小值为.
如图,三棱锥P—ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB.(1)求证:AB平面PCB;(2)求异面直线AP与BC所成角的大小;(3)求平面PAC和平面PAB所成锐二面角的余弦值.
为了缓解高考压力,某中学高三年级成立了文娱队,每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且.(1)求文娱队的人数;(2)求的分布列并计算.
在中,角A,B,C的对边分别为a,b,c,且满足(1)求角B的大小;(2)设向量,当k>1时,的最大值是5,求k的值.