(本小题满分12分)如图,四边形ACDF为正方形,平面平面BCDE,平面平面ABC,BC=2DE,DE//BC, M为AB的中点.(I)证明:;(II)证明:EM//平面ACDF.
设数列的前项和为已知 (I)设,证明数列是等比数列; (II)求数列的通项公式.
. (本小题满分10分) 设的内角A、B、C所对的边分别为、b、c,已知 (Ⅰ)求的周长; (Ⅱ)求的值.
(1)设x、y、zR,且x+y+z=1,求证x2+y2+z2≥; (2)设二次函数f (x)=ax2+bx+c(a>0),方程f (x)-x=0有两个实根x1,x2, 且满足:0<x1<x2<,若x(0,x1)。 求证:x<f (x)<x1
已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16。 (1)求数列{an}的通项公式; (2)若数列{an}和数列{bn}满足等式:an=+++……+,(nN+), 求数列{bn}的前n项和Sn。
直线l的方程为(a+1)x+y+2-a=0(aR)。 (1)若l在两坐标轴上的截距相等,求a的值; (2)若l不经过第二象限,求实数a的取值范围。