命题: ;命题:解集非空.若,求的取值范围.
在极坐标系中,求圆上的点到直线()距离的最大值.
已知直线在矩阵对应的变换作用下变为直线,求矩阵.
若数列中不超过的项数恰为(),则称数列是数列的生成数列,称相应的函数是数列生成的控制函数.(1)已知,且,写出、、;(2)已知,且,求的前项和;(3)已知,且(),若数列中,,,是公差为()的等差数列,且,求的值及的值
已知函数(),其中是自然对数的底数.(1)当时,求的极值;(2)若在上是单调增函数,求的取值范围;(3)当时,求整数的所有值,使方程在上有解.
某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系.(1)若最大拱高为6米,则隧道设计的拱宽是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小. 现隧道口的最大拱高不小于6米,则应如何设计拱高和拱宽,使得隧道口截面面积最小?(隧道口截面面积公式为)