在极坐标系中,直线的极坐标方程为是上任意一点,点P在射线OM上,且满足,记点P的轨迹为。(Ⅰ)求曲线的极坐标方程;(Ⅱ)求曲线上的点到直线距离的最大值。
设二次函数满足条件:①当时,的最大值为0,且成立;②二次函数的图象与直线交于、两点,且. (Ⅰ)求的解析式; (Ⅱ)求最小的实数,使得存在实数,只要当时,就有成立.
已知直线与椭圆相交于两个不同的点,记与轴的交点为. (Ⅰ)若,且,求实数的值; (Ⅱ)若,求面积的最大值,及此时椭圆的方程.
在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当,求函数的值域.
抛物线:,直线:交于点,交准线于点.过点的直线与抛物线有唯一的公共点(,在对称轴的两侧),且与轴交于点. (Ⅰ)求抛物线的准线方程; (Ⅱ)求的取值范围.