在极坐标系中,直线的极坐标方程为是上任意一点,点P在射线OM上,且满足,记点P的轨迹为。(Ⅰ)求曲线的极坐标方程;(Ⅱ)求曲线上的点到直线距离的最大值。
(本小题满分16分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数;. (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围;(3)若,函数在上的上界是,求的取值范围.
(本小题满分16分)设数列的前n项和为,数列满足: ,且数列的前n项和为.(1) 求的值;(2) 求证:数列是等比数列;(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.
(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若椭圆的离心率,求的方程;(2)若的圆心在直线上,求椭圆的方程.
(本小题满分15分)已知(1)当时,求函数的最小正周期;(2)当∥时,求的值.
(本小题满分14分)某工厂三个车间共有工人1000名,各车间男、女工人数如下表:
已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.(1)求的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?(3)已知,求第三车间中女工比男工少的概率.