在极坐标系中,直线的极坐标方程为是上任意一点,点P在射线OM上,且满足,记点P的轨迹为。(Ⅰ)求曲线的极坐标方程;(Ⅱ)求曲线上的点到直线距离的最大值。
已知向量与互相垂直,其中 (1)求和的值 (2)若,,求的值
假设关于某种设备的使用年限和支出的维修费用(万元),有以下的统计资料:
(1)求支出的维修费用与使用年限的线性回归方程; (2)估计使用年限为10年时,维修费用是多少? ()
在直角坐标系xoy中,椭圆C1:的左、右焦点分别为F1、F2,F2也是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且。 (1)求C1的方程; (2)平面上的点N满足,直线∥MN,且与C1交于A、B两点,若,求直线的方程。
已知函数在处取得极值,且在点处的切线的斜率为2。 (1)求a、b的值; (2)求函数的单调区间和极值; (3)若关于x的方程在上恰有两个不相等的实数根,求实数m的取值范围。
已知函数,当时,函数在x=2处取得最小值1。 (1)求函数的解析式; (2)设k>0,解关于x的不等式。