(本小题满分16分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数;. (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围;(3)若,函数在上的上界是,求的取值范围.
已知向量,函数. (1) 求函数的最大值,并写出相应的取值集合; (2) 若,且,求的值.
已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切. (Ⅰ)求圆的方程; (Ⅱ)设直线与圆相交于两点,求实数的取值范围; (Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
已知⊙C:x2+y2+2x-4y+1=0. (1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程. (2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示. (1)证明:AD⊥平面PBC; (2)求三棱锥D-ABC的体积; (3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.