(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若椭圆的离心率,求的方程;(2)若的圆心在直线上,求椭圆的方程.
如图,内接于直径为的圆,过点作圆的切线交的延长线于点,的平分线分别交和圆于点,若. (1)求证:; (2)求的值.
已知函数. (1)设函数在区间上不单调,求实数的取值范围; (2)若,且对恒成立,求的最大值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点. (1)求椭圆的方程; (2)当四边形面积取最大值时,求的值.
为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:
为了更进一步了解志愿者的来源,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查. (1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率; (2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用表示抽得甲班志愿者的人数,求的分布列和数学期望.
如图,在四棱锥中, ,, ,,分别为的中点. (1)证明:; (2)求直线与平面所成角的正弦值.