(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若椭圆的离心率,求的方程;(2)若的圆心在直线上,求椭圆的方程.
设函数,曲线过点,且在点处的切线斜率为2. (1)求a和b的值; (2)证明:.
在△ABC中,角A,B,C的对边分别为a,b,c,已知,且C=120°. (1)求角A;(2)若a=2,求c.
已知,其中为常数. (Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数在上的最小值; (Ⅱ)若函数在上既有极大值又有极小值,求实数的取值范围; (Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.
设函数 (Ⅰ)设,,,证明:在区间内存在唯一的零点; (Ⅱ)设,若对任意,均有,求的取值范围.
设函数,. (1)记为的导函数,若不等式在上有解,求实数的取值范围; (2)若,对任意的,不等式恒成立,求m(m∈Z,m1)的值.