(本小题满分16分)设数列的前n项和为,数列满足: ,且数列的前n项和为.(1) 求的值;(2) 求证:数列是等比数列;(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.
中,角A,B,C的对边分别是且满足 (1)求角B的大小; (2)若的面积为为且,求的值;
解关于的不等式:.
等比数列{}的前n 项和为,已知,,成等差数列 (1)求{}的公比; (2)若-=3,求.
已知椭圆的焦点分别是 (1)求椭圆的离心率; (2)设点P在这个椭圆上,且-=1,求的余弦值.
已知函数. (Ⅰ)讨论函数在定义域内的极值点的个数; (Ⅱ)若函数在处取得极值,且对,恒成立, 求实数的取值范围; (Ⅲ)当且时,试比较的大小。