(本小题满分16分)设数列的前n项和为,数列满足: ,且数列的前n项和为.(1) 求的值;(2) 求证:数列是等比数列;(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.
用斜二测画法画出右图中五边形ABCDE的直观图.
在半径为1的圆周上任取三点,连接成三角形,这个三角形是锐角三角形的概率是多少?
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:1,2,3,4,5
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. (注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为x1,x2,…,xn的平均数)
已知函数 (Ⅰ)若试确定函数的单调区间; (Ⅱ)若,且对于任意,恒成立,求实数的取值范围; (Ⅲ)令若至少存在一个实数,使成立,求实数的取值范围.
定义在上的函数,当时,,且对任意的 ,有, (Ⅰ)求证:; (Ⅱ)求证:对任意的,恒有; (Ⅲ)证明:是上的增函数.