已知抛物线的准线方程为。(Ⅰ)求抛物线的标准方程;(Ⅱ)若过点的直线与抛物线相交于两点,且以为直径的圆过原点,求证 为常数,并求出此常数。
已知四棱锥中,,,且底面是边长为1的正方形,是侧棱上的一点(如图所示). (1)如果点在线段上,,且,求的值; (2)在(1)的条件下,求二面角的余弦值.
( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示 (1)从该班中任意选两名学生,求他们参加活动次数不相等的概率. (2)从该班中任意选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望. (3)从该班中任意选两名学生,用表示这两人参加活动次数之和,记“函数在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.
( 本小题满分12分) 在中,若,且, (1)求角的大小; (2)求的面积.
(本小题满分1 4分)已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形. (1)求椭圆的方程: (2)若过点的直线与椭圆交于不同两点,,试问在轴上是否存在定点,使 恒为定值?若存在,求出的坐标及定值;若不存在,请说明理由.
(本小题满分l3分)己知函数. (1)求函数在点处的切线方程; (2)若方程,在上有唯一零点,求实数的取值范围; (3)对任意,恒成立,求实数的取值范闱.