已知椭圆()的离心率为,且满足右焦点到直线的距离为,(Ⅰ)求椭圆的方程;(Ⅱ)已知,过原点且斜率为的直线与椭圆交于两点,求面积的最大值。
(本小题满分14分)如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1。将沿折起到的位置,使平面与平面BCFE垂直,连结A1B、A1P(如图2)。(1)求证:PF//平面A1EB;(2)求证:平面平面A1EB;(3)求四棱锥A1—BPFE的体积。
(本小题满分12分)某校一个甲类班x名学生在2011年某次数学测试中,成绩全部介于90分与140分之间,将测试结果按如下方式分成五组,第一组;第二组第五组,下表是按上述分组方法得到的频率分布表:(1)求x及分布表中m,n,t的值;(2)设a,b是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件“的概率。”
.(本小题满分12分)已知向量,且(1)求的解析式和它的最小正周期;(2)求函数的值域。
(已知二次函数满足:对任意实数x,都有,且当(1,3)时,有成立。(1)证明:;(2)若的表达式;(3)在(2)的条件下,设 ,,若图上的点都位于直线的上方,求实数m的取值范围。
(某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站多少公里处?