已知是等比数列{}的前项和,、、成等差数列.(Ⅰ)求数列{}的公比;(Ⅱ)求证、、成等差数列.
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.
若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.(1)求和的值;(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.
设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为.(1)求圆C的极坐标方程;(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.