已知等差数列的公差不为零,,等比数列的前3项满足.(Ⅰ)求数列与的通项公式;(Ⅱ)设…,是否存在最大整数,使对任意的,均有总成立?若存在,求出的值;若不存在,请说明理由
在 △ A B C 中,角 A , B , C 的对边分别为 a , b , c 且 cos ( A - B ) cos B - sin ( A - B ) sin ( A + C ) = - 3 5 . (Ⅰ)求 sin A 的值; (Ⅱ)若 a = 4 2 , b = 5 ,求向量 B A → 在 B C → 方向上的投影.
在等比数列 { a n } 中, a 2 - a 1 = 2 ,且 2 a 2 为 3 a 1 和 a 3 的等差中项,求数列 { a n } 的首项、公比及前 n 项和.
已知:,求证:.
已知圆的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. (Ⅰ)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程; (Ⅱ)圆、是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D. 求证: (Ⅰ); (Ⅱ).