(本小题满分13分)已知函数,x∈R .(Ⅰ)求函数的最小正周期;(Ⅱ)判断函数在区间上是否为增函数?并说明理由.
(本小题满分13分) 已知集合 (1)若,求m的值; (2)若,求m的取值范围。
.(本小题满分12分) 已知正项数列满足: (1)求的范围,使得恒成立; (2)若,证明 (3)若,证明:
(本小题满分12分) 如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。 (1)求椭圆C的方程。 (2)证明:直线MA、MB与x轴围成一个等腰三角形。
(本小题满分12分) 两非零向量满足:垂直,集合是单元素集合。 (1)求的夹角; (2)若关于t的不等式的解集为空集,求实数m的值。
(本小题满分13分) 已知函数(其中a,b为常数且)的反函数的图象经过点A(4,1)和B(16,3)。 (1)求a,b的值; (2)若不等式在上恒成立,求实数m的取值范围。