(本小题满分12分) 在△ABC中,角A、B、C的对边分别为a、b、c, 向量 p="(sinA,b+c), " q=(a-c,sinC-sinB),满足|p +q |="|" p-q |.(Ⅰ) 求角B的大小;(Ⅱ)设m=(sin(C+),),n="(2k,cos2A)" (k>1), m·n有最大值为3,求k的值.
(本题满分13分)在展开式中,求:(1)第6项; (2) 第3项的系数; (3)常数项。
在10件产品中,有8件合格品,2件次品.从这10件产品中任意抽出3件. 求(Ⅰ)抽出的3件产品中恰好有1件是次品的概率;(Ⅱ)抽出的3件产品中至少有1件是次品的概率.
证明:。
在直三棱柱中,,直线与平面成角;(1)求证:平面平面;(2)求二面角的正弦值.
在上海世界博览会开展期间,计划选派部分高二学生参加宣传活动,报名参加的学生需进行测试,共设4道选择题,规定必须答完所有题,且答对一题得1分,答错一题扣1分,至少得2分才能入选成为宣传员;甲乙丙三名同学报名参加测试,他们答对每个题的概率都为,且每个人答题相互不受影响.(1)求学生甲能通过测试成为宣传员的概率;(2)求至少有两名学生成为宣传员的概率.