已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD; (2)△OAB是等腰三角形
如图18-1,正方形ABCD是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图18-2的程序移动请在图18-1中画出光点P经过的路径求光点P经过的路径总长(结果保留π)
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=-x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.若直线y=-x+b平分矩形OABC的面积,求b的值;在(1)的条件下,当直线y=-x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E、F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE、PF分别交AC于点G、H.求△PEF的边长;在不添加辅助线的情况下,从图中找出一个除△PEF外的等腰三角形,并说明理由若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论.
在中,、、三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示.这样不需求的高,而借用网格就能计算出它的面积.请你将的面积直接填写在横线上.__________________思维拓展我们把上述求面积的方法叫做构图法.若三边的长分别为、、(),请利用图的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.探索创新:若三边的长分别为、、(,且),试运用构图法求出这三角形的面积.
我市部分地区近年出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有243户村民,准备维护和新建的储水池共有20个,费用和可供使用的户数及用地情况如下表:已知可支配使用土地面积为106m2,若新建储水池个,新建和维护的总费用为万元求与之间的函数关系;满足要求的方案各有几种若平均每户捐2000元时,村里出资最多是多少