(本题13分)已知数列中,,,当时,.(1)求证为等比数列,并求数列的通项公式;(2)若若,,试求实数、的取值范围.
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)求上表中的a,b值;(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率P(A);(3)求η的分布列及数学期望Eη.
如图,四棱锥P﹣ABCD的底边ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(1)求证:BE∥平面PAD;(2)若BE⊥平面PCD,求平面EBD与平面CBD夹角的余弦值.
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.
抛物线y2=2px(p>0)上纵坐标为-p的点M到焦点的距离为2.(1)求p的值;(2)如图,A,B,C为抛物线上三点,且线段MA,MB,MC 与x轴交点的横坐标依次组成公差为1的等差数列,若△AMB的面积是△BMC面积的,求直线MB的方程.
已知函数R).(1)若 ,求曲线 在点 处的的切线方程;(2)若 对任意 恒成立,求实数a的取值范围.