已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求与平面BDE所成角的余弦值;(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为(1)求曲线C的方程。(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
已知命题:方程表示焦点在轴上的双曲线。命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
已知函数f(x)=-x3+x2-2x(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
如图,E是以AB为直径的半圆上异于点A、B的点,矩形ABCD所在的平面垂直于该半圆所在的平面,且AB=2AD=2(1)求证:(2)设平面与半圆弧的另一个交点为①试证:②若求三棱锥的体积