已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.
一个口袋中装有大小和质地都相同的白球和红球共7个,其中白球个数不少于红球个数.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为随机变量X.若P(X=2)=.(1)求口袋中的白球个数;(2)求X的概率分布与数学期望.
选修4—5:不等式选讲解不等式:∣2x-1∣+3x>1.
选修4—4:坐标系与参数方程在极坐标系中,已知直线l:rcos(q+)=,圆C:r=4cosq,求直线l被圆C截得的弦长.
选修4—2:矩阵与变换
选修4—1:几何证明选讲如图,AB为圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC.