(本小题满分12分)假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为. (1)求的分布列,以及的数学期望;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为,求的数学期望.
(本小题满分10分) 选修4-4:坐标系与参数方程选讲 已知曲线的参数方程为(为参数),曲线的参数方程为(为参数). (1)若将曲线与上各点的横坐标都缩短为原来的一半,分别得到曲线和,求出曲线和的普通方程; (2)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求过极点且与垂直的直线的极坐标方程.
(本小题满分10分) 选修4-1:几何证明选讲 如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,且交于点,交于点. (1)求的度数; (2)若,求.
(本小题满分12分) 已知,. (1)求的单调区间; (2)若时,恒成立,求实数的取值范围;
(本小题满分12分) 已知椭圆()的离心率为,且短轴长为2. (1)求椭圆的方程; (2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,,求直线的方程.
(本小题满分12分) 在四棱锥中,底面是一直角梯形,,,底面. (1)求三棱锥的体积; (2)在上是否存在一点,使得平面,若存在,求出的值;若不存在,试说明理由.