(本小题满分12分)已知的三个内角所对的边分别为,向量,,且.(1)求的大小;(2)现在给出下列三个条件:①;②;③,试从中再选择两个条件以确定,求出所确定的的面积.
已知().求: (1)若,求的值域,并写出的单调递增区间; (2)若,求的值域.
解不等式:
已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数). (1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值; (2)设函数f(x)的导函数为f’(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围; (3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.
在平面直角坐标系xoy中,已知椭圆C:=1(a>b≥1)的离心率e=,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B. (1)求椭圆C的方程。 (2)设P为椭圆上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.
如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2, EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2. (1)证明:平面BGM⊥平面BFC; (2)求三棱锥F-BMC的体积V.