如图所示,四边形ABCD是边长为2的正方形,平面ABCD,AF//DE,DE=2AF,BE与平面ABCD所成角的正切值为.(1)求证:AC//平面EFB;(2)求二面角的大小.
如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处. (1)试确定在时刻t(min)时点P距离地面的高度; (2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?
已知函数. (1)求的单调区间; (2)设,若对任意,均存在,使得<,求的取值范围.
已知过点的动直线与抛物线:相交于两点.当直线的斜率是时,. (1)求抛物线的方程; (2)设线段的中垂线在轴上的截距为,求的取值范围.
如图,在四棱锥中,底面是矩形,⊥平面,,,分别是的中点. (1)证明:⊥平面; (2)求平面与平面夹角的大小.
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值元的概率分布列.