已知正项数列,,且(1)求证:是等差数列,并求的通项公式;(2)数列满足,若,仍是中的项,求在区间中的所有可能值之和;(3)若将上述递推关系改为:,且数列中任意项,试求满足要求的实数的取值范围
如图所示, 在三棱柱中, 底面,. (1)若点分别为棱的中点,求证:平面; (2) 请根据下列要求设计切割和拼接方法:要求用平行于三棱柱的某一条侧棱的平面去截此三棱柱,切开后的两个几何体再拼接成一个长方体. 简单地写出一种切割和拼接方法,并写出拼接后的长方体的表面积(不必写出计算过程).
已知圆C经过A(1,),B(5,3),并且被直线:平分圆的面积. (Ⅰ)求圆C的方程; (Ⅱ)若过点D(0,),且斜率为的直线与圆C有两个不同的公共点,求实数的取值范围.
如图所示,直三棱柱ABC-A1B1C1的侧棱AA1 = 6,底面三角形的边AB = 3,BC = 4,AC =5,以上、下底的内切圆为底面,挖去一个圆柱,求剩余部分形成的几何体的体积.
解不等式