已知函数,(Ⅰ)求函数的最小值;(Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数的取值范围.
已知函数,. (1)若函数在上单调递增,求实数的取值范围; (2)若直线是函数图象的切线,求的最小值; (3)当时,若与的图象有两个交点,求证:.(取为,取为,取为)
数列,,满足:,,. (1)若数列是等差数列,求证:数列是等差数列; (2)若数列,都是等差数列,求证:数列从第二项起为等差数列; (3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形构成,其中为的中点.现准备在公园里建设一条四边形健康跑道,按实际需要,四边形的两个顶点分别在线段上,另外两个顶点在半圆上, ,且间的距离为1km.设四边形的周长为km. (1)若分别为的中点,求长; (2)求周长的最大值.
如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点. (1)求证:直线平面; (2)求证:直线平面.