为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.
已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?
国庆节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40000人,公园游戏场发放海宝玩具8000个.(1)求参加此次活动得到海宝玩具的频率?(2)请你估计袋中白球的数量接近多少?
如图,是半圆的直径,为圆心,、是半圆的弦,且.(1)判断直线是否为⊙O的切线,并说明理由;(2)如果,,求的长.
如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.
如图1,已知Rt△ABC中,,AC=8cm,BC=6cm.点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.以AQ、PQ为边作平行四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)用含有t的代数式表示AE=_____________;(2)当t为何值时,DQ=AP;(3)如图2,当t为何值时,平行四边形AQPD为菱形;(4)直接写出:当DQ的长最小时,t的值.