为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.
解不等式组: 2 x + 5 > 5 x + 2 ① 3 x - 1 < 4 x② .
计算: 4 + ( - 1 ) 0 + | π - 2 | - 3 tan 30 ° .
已知在 ΔABC 中, O 为 BC 边的中点,连接 AO ,将 ΔAOC 绕点 O 顺时针方向旋转(旋转角为钝角),得到 ΔEOF ,连接 AE , CF .
(1)如图1,当 ∠ BAC = 90 ° 且 AB = AC 时,则 AE 与 CF 满足的数量关系是 ;
(2)如图2,当 ∠ BAC = 90 ° 且 AB ≠ AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图3,延长 AO 到点 D ,使 OD = OA ,连接 DE ,当 AO = CF = 5 , BC = 6 时,求 DE 的长.
如图,已知抛物线 y = a x 2 + bx + c 与 x 轴相交于 A ( - 3 , 0 ) , B 两点,与 y 轴相交于点 C ( 0 , 2 ) ,对称轴是直线 x = - 1 ,连接 AC .
(1)求该抛物线的表达式;
(2)若过点 B 的直线 l 与抛物线相交于另一点 D ,当 ∠ ABD = ∠ BAC 时,求直线 l 的表达式;
(3)在(2)的条件下,当点 D 在 x 轴下方时,连接 AD ,此时在 y 轴左侧的抛物线上存在点 P ,使 S ΔBDP = 3 2 S ΔABD .请直接出所有符合条件的点 P 的坐标.
如图, ⊙ O 是 ΔABC 的外接圆, AD 是 ⊙ O 的直径, F 是 AD 延长线上一点,连接 CD , CF ,且 ∠ DCF = ∠ CAD .
(1)求证: CF 是 ⊙ O 的切线;
(2)若 cos B = 3 5 , AD = 2 ,求 FD 的长.