某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价-制造成本)(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
如图1,AB是⊙O的直径,点C在⊙O上,且点C为弧BE的中点,连接AE并延长交BC延长线于点D. (1)判断△ABD的形状,并说明理由; (2)过点C作CM⊥AD,垂足为点F,如图2. ①求证:CF是⊙O的切线; ②若⊙O的半径为3,DF=1,求sinB的值.
问题发现: 如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE. (1)求证:△ACD≌△BCE; (2)求证:CD∥BE. 拓展探究: 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,连接BE,求∠AEB的度数.
假期里,小红和小慧去买菜,三次购买的西红柿价格和数量如下表:
(1)小红和小慧购买西红柿数量的中位数是 ,众数是 ; (2)从平均价格看,谁买的西红柿要便宜些. 小亮的说法 每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克),所以两人购买的西红柿一样便宜. 小明的说法 购买的总量虽然相同,但小红花了16元,小慧花了18元,平均价格不一样,所以购买的西红柿便宜 思考小亮和小明的说法,你认为谁说得对?为什么? (3)小明在直角坐标系中画出反比例函数的图象,图象经过点P(如图),点P的横、纵坐标分别为小红和小慧购买西红柿价格的平均数. ①求此反比例函数的关系式; ②判断点Q(2,5)是否在此函数图象上.
定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8. (1)求(﹣3)⊕2的值; (2)若(x﹣3)⊕(x+1)=1,求x的值.
小刚用一张半径为12cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为5cm,那么这张扇形纸板的面积是 cm2.