已知Rt△ABC,∠ACB=90°,AC=BC=4,点O是AB中点,点P、Q分别从点A、C出发,沿AC、CB以每秒1个单位的速度运动,到达点C、B后停止。连结PQ、点D是PQ中点,连结CD并延长交AB于点E. (1)试说明:△POQ是等腰直角三角形; (2)设点P、Q运动的时间为t秒,试用含t的代数式来表示△CPQ的面积S,并求出 S的最大值; (3)如图2,点P在运动过程中,连结EP、EQ,问四边形PEQC是什么四边形,并说明理由; (4)求点D运动的路径长(直接写出结果).
(11·西宁)(本小题满分7分)给出三个整式a2,b2和2ab. (1)当a=3,b=4时,求a2+b2+2ab的值; (2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写也你所选的式子及因式分解的过程.
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).27 ⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论; ⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E. ⑴求证:点D是AB的中点; ⑵判断DE与⊙O的位置关系,并证明你的结论; ⑶若⊙O的直径为18,cosB =,求DE的长.
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE. ⑴说明四边形ACEF是平行四边形; ⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集. ⑴求每件T恤和每本影集的价格分别为多少元? ⑵有几种购买T恤和影集的方案?