(本小题满分12分)设函数,.(1)解方程:;(2)令,求证:;(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.(参考公式:当a>0,b>0时,,当且仅当a=b时等号成立)
如图,平面平面,是等腰直角三角形,,四边形是直角梯形,,,,点、分别为、的中点.(1)求证:平面;(2)求直线和平面所成角的正弦值;(3)能否在上找到一点,使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由 .
已知数列各项为非负实数,前n项和为,且(1)求数列的通项公式;(2)当时,求.
如图,从到有6条网线,数字表示该网线单位时间内可以通过的最大信息量,现从中任取3条网线且使每条网线通过最大信息量,设这三条网线通过的最大信息之和为.(1)当时,线路信息畅通,求线路信息畅通的概率;(2)求的分布列和数学期望.
已知函数的最大值为2.(1)求的值及的最小正周期;(2)在坐标纸上做出在上的图像.
已知函数. (1)当时,求函数在上的最大值;(2)令,若在区间上不单调,求的取值范围;(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件,证明:.