(本小题满分14分)已知向量,,函数。求:(1)的最小正周期;(2)的单调递增区间;(3)在上的最值,并求取得最值时对应的的值。
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
已知椭圆的长轴两端点分别为,是椭圆上的动点,以为一边在轴下方作矩形,使,交于点,交于点.(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;(Ⅱ)如图(2),若,试证明:成等比数列.
如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为.(Ⅰ)求矩形区域内的排管费用关于的函数关系式;(Ⅱ)求排管的最小费用及相应的角.
设数列的前项和为,对任意满足,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
如图,四棱锥的底面为矩形,,,分别是的中点,.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.