(1)化简求值:; (2)求函数的定义域.
解不等式.
已知函数 的图像与直线 有且仅有三个交点,交点的横坐标的最大值为 ,求证: .
在直角坐标平面内,已知两点A(-2,0)及B(2,0),动点Q到点A的距离为6,线段BQ的垂直平分线交AQ于点P。证明|PA|+|PB|为常数,并写出点P的轨迹T的方程;
已知动点与双曲线的两个焦点、的距离之和为定值,且的最小值为.求动点的轨迹方程;
已知椭圆与直线相交于两点.当椭圆的离心率满足,且(为坐标原点)时,求椭圆长轴长的取值范围.