某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满元可以转动如图所示的圆盘一次,其中为圆心,且标有元、元、元的三部分区域面积相等. 假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了元,第一次转动获得了元,第二次获得了元,则其共获得了元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.⑴若顾客甲消费了元,求他获得优惠券面额大于元的概率?⑵若顾客乙消费了元,求他总共获得优惠券金额不低于元的概率?
(本小题满分12分)设椭圆E:的上焦点是,过点P(3,4)和作直线P交椭圆于A、B两点,已知A().(1)求椭圆E的方程;(2)设点C是椭圆E上到直线P距离最远的点,求C点的坐标。
(本小题满分12分)设的内角A、B、C所对的边分别为a、b、c,且.(1)当时,求a的值;(2)当的面积为3时,求a+c的值。
已知a>0且,关于x的不等式的解集是,解关于x的不等式。
如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线.(1)求曲线的方程;(2)若直线与(1)中所求点的轨迹交于不同两点是坐标原点,且,求△的面积的取值范围.
如图,在直三棱柱点D在(1)证明:无论为任何正数,均有;(2)当为何值时,二面角.